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TABLE IV
DERENSEAND-EVALUATION-STRATEGIES
Category Papers

IV. POISONING AND BACKDOOR ATTACKS

Multimodal models, including Vision-Language Models
(VLMs) and Multimodal Large Language Models (MLLMs),
are vulnerable to data poisoning and backdoor attacks due to
training on large, uncurated datasets. These attacks involve ad-
versaries manipulating model behavior by injecting malicious
data into training sets.

Early foundational work demonstrated that existing poison-
ing techniques could be adapted to multimodal contrastive
models by injecting altered images with wrong labels or
embedding backdoor patches with target labels, requiring
attackers to have training dataset modification access [33|.
Building upon this foundation, Yang et al. revealed vulnera-
bilities in both visual and linguistic modalities of multimodal
encoders used in text-image retrieval tasks. Their work showed
that adversaries could inject mismatched text-image pairs to
force models to map specific text groups to target images while
preserving normal functionality [34].

This understanding of multimodal encoder vulnerabilities
led to the development of more sophisticated attacks like
BadCLIP, which employs an advanced dual-embedding guided
framework to create resilient backdoor attacks against MCL
models. Using Bayesian analysis principles, this attack op-
timizes visual trigger patterns for textual embedding consis-
tency and aligns poisoned features with target vision features,
designed to induce subtle parameter variations that resist
detection and fine-tuning defenses [335].

As research progressed toward more complex Vision-
Language Models and MLLMs, attack strategies evolved to
target their unique capabilities in generating free-form text and
performing complex reasoning tasks. ImgTrojan exemplifies

this shift by performing cross-modality jailbreaks that replace
original image captions with malicious jailbreak prompts
during training, transforming even clean images into trojans
that bypass safety barriers at inference time through learned
associations between poisoned images and injected prompts
[36]. Similarly, Dual-Key Multimodal Backdoors targets VQA
models using triggers in both visual and textual modalities that
activate only when simultaneously present, enhancing stealth
by reducing accidental activation likelihood through optimized
visual trigger patterns designed for effective processing by
static pretrained feature extractors [37]. Shadowcast emerged
as a stealthy poisoning attack using visually indistinguishable
images paired with manipulated text, enabling both label
attacks for misclassification and persuasion attacks for mis-
leading narratives without requiring training control [38]]. This
was followed by TrojVLM, which specifically targets image-
to-text generation by embedding pixel patterns that trigger
insertion of predefined text while maintaining semantic co-
herence, with attackers modifying lightweight adaptors rather
than full models [39].

Extending these concepts further, VL-Trojan demonstrated
how backdoors could be embedded in autoregressive VLMs
during instruction tuning by placing triggers in instructions or
images while operating with limited access to visual encoder
architecture only [40]. Building on this foundation, BadToken
introduced novel token-level backdoor behaviors for enhanced
flexibility and stealth in MLLMs, featuring token-substitution
capabilities that replace specific source tokens with target to-
kens and token-addition mechanisms that append target token
sequences to outputs, enabling subtle alteration of critical text
portions with significant consequences in applications like
autonomous driving or medical diagnosis [41].

The evolution toward more efficient and specialized attack
methodologies led to the development of the BAGS score
method, which enables efficient backdooring of VQA and
AVSR models using gradient-based sample selection to mini-
mize required data and computation while maintaining effec-
tiveness [42]]. This efficiency-focused approach was comple-
mented by MABA, which enhances backdoor generalizability
across visual and text domains using domain-agnostic triggers
such as simple patches or text symbols, operating in black-box
settings without knowledge of test data distribution [43].

The field has also witnessed the emergence of novel attack
vectors that transcend traditional training-time manipulation.
AnyDoor represents a paradigm shift as a test-time backdoor
attack requiring no training data access, using universal adver-
sarial perturbations on images combined with text triggers to
allow dynamic modification of backdoor effects during testing
[14]. This approach to runtime manipulation paved the way
for BadVLMDriver, the first physical backdoor attack against
autonomous driving VLMs, which uses common objects like
red balloons as triggers to induce unsafe actions while employ-
ing generative models to synthesize backdoor training samples
with embedded physical triggers [44].

V. PROMPT INJECTION ATTACKS

The emergence of multimodal large language models has
introduced sophisticated attack vectors that exploit the inter-
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section of visual and textual processing capabilities. These ad-
versarial approaches fundamentally divide into two paradigms:
perturbation-based methods that embed imperceptible mod-
ifications into inputs, and typography-based techniques that
leverage visible textual elements to exploit models’ inherent
biases.

Bagdasaryan et al. [45]] pioneered adversarial modifications
to images or audio that embed malicious prompts, using
techniques like the Fast Gradient Sign Method to create
imperceptible perturbations that steer models toward attacker-
specified outputs. Their approach enables both targeted-output
attacks that force specific malicious responses and dialog
poisoning attacks where injected instructions become embed-
ded in conversation history, influencing all subsequent model
behavior.

Building on similar principles, recent work [46]] extends this
by simultaneously targeting multiple processing stages within
vision-language models. Rather than focusing solely on final
outputs, this method employs multi-objective optimization to
perturb visual tokens, textual representations, and generated
text concurrently, enhancing cross-prompt transferability by
shifting internal probability distributions across different con-
textual points.

While perturbation methods maintain input authenticity
through imperceptible modifications, typography-based attacks
accept visible alterations for more reliable exploitation of
models’ textual bias. The foundational approach [47] directly
adds misleading text to input images, capitalizing on vision-
language models’ tendency to prioritize textual signals over
visual content and generating outputs semantically aligned
with injected typography rather than actual image content.

This concept has been advanced through work demonstrat-
ing that visual prompts embedded within images can receive
higher execution priority than conventional text input instruc-
tions [48]. Sophisticated manipulation is achieved through
careful control of textual elements’ size, opacity, and spatial
positioning while maintaining near-imperceptibility to human
observers, effectively bridging overt typographic manipulation
with subtle adversarial perturbations.

The most sophisticated evolution harnesses vision-language
models’ reasoning capabilities to optimize their own exploita-
tion [47]. Qraitem et al. dynamically generate the most effec-
tive deceptive content through class-based variants that lever-
age models’ visual similarity assessments to identify optimal
misleading labels, and reasoned attacks that employ advanced
language models to generate both deceptive classifications and
accompanying rationales that enhance attack credibility.
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